Artificial General Intelligence

评论 · 11 浏览

Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or goes beyond human cognitive capabilities throughout a vast array of cognitive jobs.

Artificial basic intelligence (AGI) is a type of artificial intelligence (AI) that matches or goes beyond human cognitive abilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably exceeds human cognitive capabilities. AGI is considered among the definitions of strong AI.


Creating AGI is a primary objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research and development jobs across 37 countries. [4]

The timeline for attaining AGI remains a subject of continuous argument among researchers and professionals. Since 2023, some argue that it may be possible in years or decades; others preserve it may take a century or longer; a minority believe it might never ever be accomplished; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has actually expressed concerns about the rapid development towards AGI, recommending it might be achieved earlier than many anticipate. [7]

There is dispute on the specific definition of AGI and concerning whether contemporary large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have mentioned that reducing the threat of human termination posed by AGI ought to be a worldwide priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a risk. [16] [17]

Terminology


AGI is likewise referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]

Some academic sources schedule the term "strong AI" for computer system programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to fix one specific problem however lacks general cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]

Related ideas consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is much more generally intelligent than human beings, [23] while the idea of transformative AI associates with AI having a large impact on society, for instance, comparable to the agricultural or commercial revolution. [24]

A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For instance, a proficient AGI is specified as an AI that outperforms 50% of knowledgeable grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified however with a limit of 100%. They think about large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular meanings of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular techniques. [b]

Intelligence characteristics


Researchers usually hold that intelligence is needed to do all of the following: [27]

reason, use method, solve puzzles, and make judgments under uncertainty
represent understanding, consisting of sound judgment understanding
strategy
discover
- interact in natural language
- if essential, integrate these abilities in completion of any given objective


Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about additional characteristics such as creativity (the capability to form unique mental images and concepts) [28] and autonomy. [29]

Computer-based systems that display much of these capabilities exist (e.g. see computational imagination, automated thinking, decision support system, robotic, evolutionary computation, smart representative). There is debate about whether contemporary AI systems possess them to an adequate degree.


Physical traits


Other capabilities are thought about preferable in smart systems, as they might impact intelligence or aid in its expression. These include: [30]

- the capability to sense (e.g. see, hear, etc), and
- the capability to act (e.g. relocation and control things, change location to explore, and so on).


This includes the ability to identify and react to danger. [31]

Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and control items, modification location to check out, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) might already be or become AGI. Even from a less positive point of view on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a particular physical personification and therefore does not demand a capability for mobility or conventional "eyes and ears". [32]

Tests for human-level AGI


Several tests implied to confirm human-level AGI have actually been thought about, consisting of: [33] [34]

The idea of the test is that the machine needs to attempt and pretend to be a man, by addressing concerns put to it, and it will just pass if the pretence is reasonably convincing. A significant part of a jury, who must not be professional about makers, should be taken in by the pretence. [37]

AI-complete problems


A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would require to carry out AGI, due to the fact that the solution is beyond the abilities of a purpose-specific algorithm. [47]

There are many problems that have actually been conjectured to require basic intelligence to fix along with human beings. Examples include computer system vision, natural language understanding, and handling unanticipated situations while resolving any real-world issue. [48] Even a particular task like translation needs a machine to check out and compose in both languages, follow the author's argument (factor), comprehend the context (understanding), and faithfully recreate the author's original intent (social intelligence). All of these problems need to be solved simultaneously in order to reach human-level device efficiency.


However, a lot of these tasks can now be carried out by modern-day large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of criteria for checking out comprehension and visual thinking. [49]

History


Classical AI


Modern AI research started in the mid-1950s. [50] The very first generation of AI scientists were convinced that synthetic basic intelligence was possible and that it would exist in just a few decades. [51] AI leader Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]

Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might produce by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the project of making HAL 9000 as sensible as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the issue of creating 'expert system' will significantly be solved". [54]

Several classical AI projects, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it became obvious that scientists had grossly ignored the difficulty of the task. Funding companies ended up being hesitant of AGI and put scientists under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "bring on a casual discussion". [58] In action to this and the success of specialist systems, both market and federal government pumped cash into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in 20 years, AI scientists who forecasted the imminent achievement of AGI had been mistaken. By the 1990s, AI researchers had a reputation for making vain pledges. They became hesitant to make forecasts at all [d] and avoided reference of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI attained industrial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable results and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research in this vein is heavily moneyed in both academia and industry. As of 2018 [update], development in this field was considered an emerging pattern, and a fully grown stage was expected to be reached in more than ten years. [64]

At the turn of the century, numerous mainstream AI scientists [65] hoped that strong AI might be established by integrating programs that fix various sub-problems. Hans Moravec composed in 1988:


I am confident that this bottom-up path to synthetic intelligence will one day satisfy the traditional top-down route majority method, ready to supply the real-world skills and the commonsense knowledge that has actually been so frustratingly evasive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]

However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:


The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really only one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we should even attempt to reach such a level, considering that it looks as if arriving would just amount to uprooting our symbols from their intrinsic meanings (thereby merely decreasing ourselves to the functional equivalent of a programmable computer). [66]

Modern artificial basic intelligence research study


The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to satisfy goals in a large range of environments". [68] This type of AGI, characterized by the ability to increase a mathematical meaning of intelligence instead of display human-like behaviour, [69] was also called universal expert system. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a number of visitor speakers.


As of 2023 [upgrade], a little number of computer system scientists are active in AGI research study, and lots of add to a series of AGI conferences. However, significantly more scientists are interested in open-ended learning, [76] [77] which is the idea of allowing AI to continually discover and innovate like people do.


Feasibility


Since 2023, the development and potential achievement of AGI stays a subject of intense debate within the AI neighborhood. While standard consensus held that AGI was a remote objective, current advancements have led some researchers and market figures to claim that early forms of AGI might already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This forecast failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and essentially unpredictable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern computing and human-level expert system is as large as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]

A more obstacle is the lack of clarity in specifying what intelligence requires. Does it need consciousness? Must it show the capability to set goals as well as pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as planning, thinking, and causal understanding needed? Does intelligence need clearly reproducing the brain and its particular professors? Does it need feelings? [81]

Most AI researchers think strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be achieved, however that the present level of progress is such that a date can not properly be forecasted. [84] AI professionals' views on the feasibility of AGI wax and wane. Four surveys carried out in 2012 and 2013 recommended that the mean estimate amongst specialists for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the professionals, 16.5% addressed with "never ever" when asked the exact same question however with a 90% confidence rather. [85] [86] Further current AGI development factors to consider can be discovered above Tests for confirming human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft researchers released a comprehensive assessment of GPT-4. They concluded: "Given the breadth and fishtanklive.wiki depth of GPT-4's capabilities, our company believe that it might reasonably be deemed an early (yet still insufficient) version of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of human beings on the Torrance tests of imaginative thinking. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has already been accomplished with frontier designs. They wrote that reluctance to this view originates from four main reasons: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]

2023 likewise marked the development of large multimodal designs (big language models capable of processing or generating multiple methods such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time believing before they react". According to Mira Murati, this ability to think before reacting represents a brand-new, extra paradigm. It enhances design outputs by spending more computing power when producing the response, whereas the model scaling paradigm enhances outputs by increasing the design size, training data and training compute power. [93] [94]

An OpenAI worker, Vahid Kazemi, claimed in 2024 that the company had actually accomplished AGI, specifying, "In my viewpoint, we have currently achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than most human beings at many jobs." He also dealt with criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their learning process to the scientific method of observing, hypothesizing, and verifying. These declarations have triggered argument, as they count on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate impressive adaptability, they may not fully fulfill this standard. Notably, Kazemi's remarks came quickly after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's tactical objectives. [95]

Timescales


Progress in expert system has actually historically gone through periods of rapid development separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to create area for more development. [82] [98] [99] For instance, the computer hardware offered in the twentieth century was not sufficient to execute deep knowing, which needs great deals of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel says that estimates of the time required before a really versatile AGI is built differ from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have offered a vast array of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards anticipating that the onset of AGI would occur within 16-26 years for modern and historic predictions alike. That paper has been criticized for how it classified opinions as expert or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the conventional method utilized a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the current deep knowing wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in first grade. A grownup comes to about 100 typically. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model capable of performing lots of varied jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]

In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to adhere to their security standards; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system efficient in carrying out more than 600 various tasks. [110]

In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI designs and showed human-level performance in jobs spanning numerous domains, such as mathematics, coding, and law. This research study stimulated an argument on whether GPT-4 might be thought about an early, incomplete version of synthetic basic intelligence, emphasizing the requirement for more exploration and evaluation of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton stated that: [112]

The idea that this things could really get smarter than people - a couple of individuals believed that, [...] But many people thought it was method off. And I thought it was method off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.


In May 2023, Demis Hassabis similarly said that "The progress in the last few years has actually been pretty unbelievable", and that he sees no reason that it would decrease, expecting AGI within a decade or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test a minimum of as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "noticeably plausible". [115]

Whole brain emulation


While the development of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can serve as an alternative approach. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in information, and then copying and simulating it on a computer system or another computational device. The simulation model should be adequately loyal to the original, so that it acts in practically the very same way as the initial brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has been gone over in expert system research study [103] as an approach to strong AI. Neuroimaging technologies that might deliver the required detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of enough quality will end up being offered on a similar timescale to the computing power needed to emulate it.


Early estimates


For low-level brain simulation, a really powerful cluster of computers or GPUs would be needed, offered the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by the adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a basic switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at numerous quotes for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the essential hardware would be readily available at some point between 2015 and 2025, if the exponential growth in computer system power at the time of writing continued.


Current research study


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed a particularly detailed and openly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based approaches


The synthetic neuron design presumed by Kurzweil and utilized in many current synthetic neural network applications is easy compared to biological nerve cells. A brain simulation would likely need to record the detailed cellular behaviour of biological nerve cells, presently comprehended just in broad summary. The overhead introduced by full modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are known to play a function in cognitive processes. [125]

A fundamental criticism of the simulated brain method stems from embodied cognition theory which asserts that human personification is a necessary element of human intelligence and is needed to ground significance. [126] [127] If this theory is correct, any totally practical brain model will need to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unknown whether this would suffice.


Philosophical point of view


"Strong AI" as defined in philosophy


In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about artificial intelligence: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and awareness.


The very first one he called "strong" because it makes a stronger statement: it assumes something unique has actually taken place to the machine that goes beyond those capabilities that we can check. The behaviour of a "weak AI" machine would be specifically similar to a "strong AI" machine, however the latter would also have subjective conscious experience. This use is also typical in scholastic AI research study and textbooks. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level synthetic basic intelligence". [102] This is not the very same as Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic thinkers such as Searle do not think that holds true, and to most artificial intelligence researchers the concern is out-of-scope. [130]

Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to know if it actually has mind - certainly, there would be no method to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 different things.


Consciousness


Consciousness can have various significances, and some aspects play substantial roles in sci-fi and the ethics of artificial intelligence:


Sentience (or "phenomenal consciousness"): The ability to "feel" understandings or feelings subjectively, instead of the ability to factor about perceptions. Some theorists, such as David Chalmers, use the term "awareness" to refer specifically to remarkable awareness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience develops is referred to as the tough issue of awareness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not conscious, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had attained life, though this claim was commonly challenged by other specialists. [135]

Self-awareness: To have mindful awareness of oneself as a separate person, particularly to be purposely knowledgeable about one's own ideas. This is opposed to merely being the "subject of one's thought"-an os or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the very same method it represents everything else)-however this is not what individuals usually imply when they use the term "self-awareness". [g]

These qualities have an ethical measurement. AI life would trigger concerns of well-being and legal defense, similarly to animals. [136] Other aspects of consciousness related to cognitive abilities are likewise relevant to the idea of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social frameworks is an emerging concern. [138]

Benefits


AGI might have a broad range of applications. If oriented towards such objectives, AGI could help mitigate various issues worldwide such as hunger, hardship and health issues. [139]

AGI could improve efficiency and efficiency in the majority of tasks. For example, in public health, AGI could speed up medical research, notably against cancer. [140] It could take care of the senior, [141] and equalize access to fast, high-quality medical diagnostics. It could provide fun, low-cost and personalized education. [141] The requirement to work to subsist could end up being obsolete if the wealth produced is effectively redistributed. [141] [142] This likewise raises the concern of the location of human beings in a significantly automated society.


AGI could also assist to make logical choices, and to anticipate and prevent disasters. It could likewise help to reap the advantages of possibly disastrous innovations such as nanotechnology or environment engineering, while preventing the associated risks. [143] If an AGI's main objective is to prevent existential catastrophes such as human extinction (which could be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it could take procedures to drastically decrease the dangers [143] while minimizing the impact of these steps on our quality of life.


Risks


Existential dangers


AGI might represent multiple types of existential danger, which are threats that threaten "the premature termination of Earth-originating smart life or the long-term and extreme damage of its potential for preferable future development". [145] The danger of human extinction from AGI has actually been the subject of many disputes, however there is also the possibility that the advancement of AGI would lead to a permanently flawed future. Notably, it could be utilized to spread out and preserve the set of worths of whoever establishes it. If humanity still has moral blind areas comparable to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI might assist in mass surveillance and brainwashing, which could be utilized to develop a stable repressive worldwide totalitarian regime. [147] [148] There is likewise a threat for the devices themselves. If devices that are sentient or otherwise worthwhile of moral factor to consider are mass developed in the future, engaging in a civilizational path that indefinitely disregards their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI might enhance mankind's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for proceeding with due care", not for "deserting AI". [147]

Risk of loss of control and human extinction


The thesis that AI poses an existential danger for people, which this danger needs more attention, is controversial however has actually been endorsed in 2023 by many public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed extensive indifference:


So, dealing with possible futures of enormous advantages and risks, the experts are definitely doing whatever possible to make sure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll get here in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]

The prospective fate of humankind has in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence permitted humankind to control gorillas, which are now susceptible in methods that they could not have expected. As an outcome, the gorilla has become an endangered species, not out of malice, however simply as a civilian casualties from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind which we should beware not to anthropomorphize them and analyze their intents as we would for humans. He said that individuals will not be "smart enough to design super-intelligent devices, yet extremely silly to the point of providing it moronic objectives with no safeguards". [155] On the other side, the concept of crucial convergence recommends that nearly whatever their objectives, smart representatives will have reasons to try to survive and obtain more power as intermediary steps to achieving these objectives. And that this does not require having feelings. [156]

Many scholars who are worried about existential danger advocate for more research into solving the "control problem" to answer the concern: what kinds of safeguards, algorithms, or architectures can programmers implement to maximise the likelihood that their recursively-improving AI would continue to act in a friendly, instead of devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might result in a race to the bottom of safety precautions in order to release products before rivals), [159] and the usage of AI in weapon systems. [160]

The thesis that AI can present existential threat also has critics. Skeptics usually state that AGI is not likely in the short-term, or that issues about AGI distract from other concerns connected to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals beyond the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, leading to further misunderstanding and fear. [162]

Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an irrational belief in a supreme God. [163] Some scientists think that the communication campaigns on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to pump up interest in their items. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and scientists, provided a joint declaration asserting that "Mitigating the threat of termination from AI need to be an international concern along with other societal-scale risks such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their jobs affected". [166] [167] They consider workplace employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make choices, to interface with other computer tools, however also to control robotized bodies.


According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]

Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or many people can wind up miserably poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the pattern appears to be towards the 2nd option, with innovation driving ever-increasing inequality


Elon Musk thinks about that the automation of society will require federal governments to embrace a universal standard earnings. [168]

See also


Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI impact
AI safety - Research location on making AI safe and useful
AI alignment - AI conformance to the desired objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated machine learning - Process of automating the application of device knowing
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play different video games
Generative artificial intelligence - AI system efficient in generating material in reaction to triggers
Human Brain Project - Scientific research study job
Intelligence amplification - Use of info technology to augment human intelligence (IA).
Machine principles - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task learning - Solving numerous machine learning tasks at the exact same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to artificial intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer knowing - Machine knowing method.
Loebner Prize - Annual AI competition.
Hardware for artificial intelligence - Hardware specifically created and optimized for expert system.
Weak expert system - Form of artificial intelligence.


Notes


^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese space.
^ AI founder John McCarthy writes: "we can not yet characterize in basic what kinds of computational procedures we wish to call intelligent. " [26] (For a discussion of some definitions of intelligence utilized by artificial intelligence scientists, see philosophy of synthetic intelligence.).
^ The Lighthill report particularly criticized AI's "grand objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became determined to money just "mission-oriented direct research study, instead of basic undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be a terrific relief to the rest of the workers in AI if the developers of brand-new basic formalisms would express their hopes in a more guarded form than has sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a standard AI book: "The assertion that makers might perhaps act wisely (or, possibly better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are really thinking (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that artificial basic intelligence benefits all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were identified as being active in 2020.
^ a b c "AI timelines: What do professionals in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton stops Google and warns of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine hazard is not AI itself however the method we deploy it.
^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential dangers to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of extinction from AI need to be an international concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of danger of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete variety of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on all of us to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent qualities is based upon the topics covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of tough examinations both AI versions have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers avoided the term artificial intelligence for worry of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in maker intelligence, artificial general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of expert viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting A

评论