Artificial General Intelligence

评论 · 9 浏览

Artificial general intelligence (AGI) is a type of synthetic intelligence (AI) that matches or surpasses human cognitive capabilities across a large variety of cognitive jobs.

Artificial general intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive capabilities across a wide variety of cognitive jobs. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly goes beyond human cognitive capabilities. AGI is considered one of the meanings of strong AI.


Creating AGI is a primary goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development tasks across 37 countries. [4]

The timeline for attaining AGI stays a subject of continuous debate among scientists and experts. As of 2023, some argue that it might be possible in years or decades; others keep it might take a century or longer; a minority believe it might never ever be attained; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the rapid progress towards AGI, suggesting it might be attained faster than numerous expect. [7]

There is argument on the precise definition of AGI and relating to whether modern large language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical subject in science fiction and futures studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have actually mentioned that reducing the risk of human termination posed by AGI needs to be a global concern. [14] [15] Others discover the advancement of AGI to be too remote to present such a danger. [16] [17]

Terminology


AGI is likewise understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general smart action. [21]

Some academic sources reserve the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) is able to resolve one particular issue but lacks basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as people. [a]

Related principles consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is far more normally intelligent than humans, [23] while the notion of transformative AI relates to AI having a big effect on society, for example, comparable to the agricultural or industrial transformation. [24]

A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, skilled, specialist, virtuoso, and superhuman. For example, a proficient AGI is specified as an AI that exceeds 50% of experienced grownups in a wide variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified however with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular meanings of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular approaches. [b]

Intelligence qualities


Researchers generally hold that intelligence is required to do all of the following: [27]

reason, use strategy, resolve puzzles, and make judgments under unpredictability
represent understanding, consisting of common sense knowledge
strategy
find out
- interact in natural language
- if necessary, incorporate these skills in conclusion of any provided objective


Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider additional characteristics such as creativity (the ability to form unique mental images and principles) [28] and autonomy. [29]

Computer-based systems that show a lot of these capabilities exist (e.g. see computational creativity, automated thinking, choice support group, robotic, evolutionary computation, smart agent). There is argument about whether modern-day AI systems possess them to an appropriate degree.


Physical qualities


Other abilities are considered preferable in smart systems, as they might affect intelligence or aid in its expression. These include: [30]

- the capability to sense (e.g. see, hear, and so on), and
- the ability to act (e.g. move and manipulate things, modification place to explore, etc).


This consists of the capability to discover and react to risk. [31]

Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. move and control items, change area to explore, etc) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) might already be or end up being AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is adequate, provided it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has never been proscribed a particular physical embodiment and thus does not demand a capacity for mobility or conventional "eyes and ears". [32]

Tests for human-level AGI


Several tests suggested to confirm human-level AGI have been thought about, including: [33] [34]

The concept of the test is that the machine needs to attempt and pretend to be a man, by responding to questions put to it, and it will just pass if the pretence is fairly persuading. A considerable portion of a jury, who must not be expert about makers, should be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to implement AGI, due to the fact that the service is beyond the capabilities of a purpose-specific algorithm. [47]

There are lots of issues that have been conjectured to need general intelligence to resolve in addition to human beings. Examples include computer vision, natural language understanding, and handling unforeseen scenarios while fixing any real-world issue. [48] Even a specific job like translation needs a machine to read and write in both languages, follow the author's argument (reason), understand the context (understanding), and consistently recreate the author's original intent (social intelligence). All of these issues require to be fixed simultaneously in order to reach human-level machine efficiency.


However, a lot of these jobs can now be performed by modern big language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on lots of criteria for checking out comprehension and visual reasoning. [49]

History


Classical AI


Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial general intelligence was possible which it would exist in simply a few decades. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]

Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could create by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the project of making HAL 9000 as sensible as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the issue of developing 'synthetic intelligence' will substantially be resolved". [54]

Several classical AI jobs, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it ended up being apparent that scientists had grossly ignored the difficulty of the project. Funding companies became doubtful of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "bring on a casual discussion". [58] In action to this and the success of professional systems, both market and government pumped money into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever satisfied. [60] For the 2nd time in 20 years, AI researchers who forecasted the impending achievement of AGI had actually been misinterpreted. By the 1990s, AI scientists had a credibility for making vain promises. They ended up being reluctant to make forecasts at all [d] and prevented reference of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by concentrating on particular sub-problems where AI can produce proven outcomes and commercial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research in this vein is greatly moneyed in both academic community and industry. Since 2018 [update], development in this field was thought about an emerging pattern, and a fully grown phase was anticipated to be reached in more than 10 years. [64]

At the millenium, lots of traditional AI scientists [65] hoped that strong AI might be developed by combining programs that fix various sub-problems. Hans Moravec composed in 1988:


I am confident that this bottom-up path to artificial intelligence will one day meet the standard top-down route majority method, prepared to supply the real-world competence and the commonsense understanding that has actually been so frustratingly evasive in thinking programs. Fully intelligent devices will result when the metaphorical golden spike is driven joining the two efforts. [65]

However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:


The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is actually only one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, since it looks as if arriving would just total up to uprooting our symbols from their intrinsic significances (consequently simply minimizing ourselves to the functional equivalent of a programmable computer). [66]

Modern artificial basic intelligence research


The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to please objectives in a wide variety of environments". [68] This kind of AGI, characterized by the ability to increase a mathematical definition of intelligence rather than display human-like behaviour, [69] was also called universal artificial intelligence. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a number of visitor lecturers.


Since 2023 [upgrade], a little number of computer system scientists are active in AGI research study, and many add to a series of AGI conferences. However, progressively more scientists have an interest in open-ended knowing, [76] [77] which is the concept of enabling AI to constantly discover and innovate like people do.


Feasibility


As of 2023, the development and possible accomplishment of AGI remains a subject of intense dispute within the AI community. While conventional consensus held that AGI was a distant goal, current advancements have led some scientists and industry figures to claim that early kinds of AGI might already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and fundamentally unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between contemporary computing and human-level expert system is as large as the gulf in between current space flight and practical faster-than-light spaceflight. [80]

An additional obstacle is the absence of clarity in specifying what intelligence requires. Does it require consciousness? Must it show the ability to set goals as well as pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as planning, thinking, and causal understanding required? Does intelligence need explicitly duplicating the brain and its particular professors? Does it need emotions? [81]

Most AI researchers believe strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that today level of progress is such that a date can not precisely be forecasted. [84] AI specialists' views on the expediency of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the median estimate among experts for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% answered with "never" when asked the very same concern however with a 90% self-confidence rather. [85] [86] Further existing AGI progress factors to consider can be found above Tests for verifying human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 predictions made in between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft scientists published a comprehensive assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might reasonably be deemed an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has actually already been accomplished with frontier designs. They wrote that unwillingness to this view originates from 4 main factors: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]

2023 also marked the introduction of large multimodal designs (big language designs efficient in processing or producing several techniques such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the first of a series of designs that "spend more time thinking before they react". According to Mira Murati, this capability to think before responding represents a brand-new, extra paradigm. It improves model outputs by spending more computing power when generating the answer, whereas the model scaling paradigm enhances outputs by increasing the model size, training information and training compute power. [93] [94]

An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had accomplished AGI, specifying, "In my viewpoint, we have actually currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than a lot of people at the majority of jobs." He likewise addressed criticisms that big language models (LLMs) merely follow predefined patterns, comparing their knowing procedure to the clinical approach of observing, assuming, and confirming. These statements have actually sparked dispute, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate impressive flexibility, they may not completely meet this standard. Notably, Kazemi's comments came soon after OpenAI removed "AGI" from the terms of its collaboration with Microsoft, triggering speculation about the company's tactical intentions. [95]

Timescales


Progress in artificial intelligence has actually traditionally gone through periods of fast progress separated by periods when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to develop area for additional progress. [82] [98] [99] For example, the computer hardware offered in the twentieth century was not adequate to execute deep knowing, which needs great deals of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel says that quotes of the time required before a truly versatile AGI is constructed vary from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research neighborhood seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have provided a large range of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions found a predisposition towards predicting that the start of AGI would happen within 16-26 years for contemporary and historical predictions alike. That paper has actually been slammed for how it categorized opinions as expert or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the standard technique utilized a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was concerned as the preliminary ground-breaker of the current deep knowing wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly available and easily available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. A grownup concerns about 100 typically. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model efficient in performing lots of varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]

In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to adhere to their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 various tasks. [110]

In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, competing that it displayed more general intelligence than previous AI models and showed human-level efficiency in jobs spanning numerous domains, such as mathematics, coding, and law. This research study sparked a debate on whether GPT-4 might be considered an early, incomplete variation of artificial basic intelligence, emphasizing the need for more exploration and examination of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton stated that: [112]

The concept that this things might actually get smarter than people - a couple of people thought that, [...] But many people believed it was method off. And I believed it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.


In May 2023, Demis Hassabis likewise stated that "The development in the last few years has been quite extraordinary", and that he sees no reason it would slow down, anticipating AGI within a years or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test at least in addition to human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "strikingly plausible". [115]

Whole brain emulation


While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can act as an alternative method. With entire brain simulation, a brain design is constructed by scanning and mapping a biological brain in information, and then copying and imitating it on a computer system or another computational device. The simulation model need to be adequately loyal to the initial, so that it behaves in practically the exact same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has been discussed in artificial intelligence research [103] as a method to strong AI. Neuroimaging innovations that might deliver the necessary in-depth understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will appear on a comparable timescale to the computing power needed to replicate it.


Early estimates


For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be required, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by the adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at various estimates for the hardware required to equal the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a measure used to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to predict the needed hardware would be available sometime between 2015 and 2025, if the rapid development in computer power at the time of composing continued.


Current research


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established an especially comprehensive and openly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The artificial neuron design assumed by Kurzweil and used in lots of present synthetic neural network applications is simple compared with biological nerve cells. A brain simulation would likely need to catch the detailed cellular behaviour of biological neurons, currently comprehended only in broad overview. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the price quotes do not represent glial cells, which are understood to play a function in cognitive processes. [125]

An essential criticism of the simulated brain approach stems from embodied cognition theory which asserts that human personification is an important element of human intelligence and is essential to ground meaning. [126] [127] If this theory is correct, any fully practical brain model will need to encompass more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, however it is unidentified whether this would be enough.


Philosophical point of view


"Strong AI" as defined in philosophy


In 1980, theorist John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about artificial intelligence: [f]

Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (just) act like it believes and has a mind and awareness.


The very first one he called "strong" because it makes a stronger statement: it presumes something special has actually occurred to the device that goes beyond those capabilities that we can check. The behaviour of a "weak AI" maker would be exactly identical to a "strong AI" maker, however the latter would also have subjective conscious experience. This usage is also typical in academic AI research and textbooks. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is essential for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most expert system scientists the concern is out-of-scope. [130]

Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it really has mind - indeed, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 different things.


Consciousness


Consciousness can have different significances, and some aspects play significant roles in sci-fi and the ethics of artificial intelligence:


Sentience (or "remarkable consciousness"): The ability to "feel" understandings or feelings subjectively, as opposed to the ability to reason about perceptions. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer specifically to phenomenal awareness, which is approximately equivalent to life. [132] Determining why and how subjective experience occurs is known as the tough problem of awareness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was commonly contested by other professionals. [135]

Self-awareness: To have conscious awareness of oneself as a different individual, particularly to be knowingly familiar with one's own ideas. This is opposed to merely being the "topic of one's thought"-an os or debugger has the ability to be "familiar with itself" (that is, to represent itself in the very same way it represents whatever else)-however this is not what individuals generally imply when they utilize the term "self-awareness". [g]

These characteristics have a moral measurement. AI sentience would trigger issues of welfare and legal defense, likewise to animals. [136] Other aspects of consciousness associated to cognitive abilities are likewise appropriate to the principle of AI rights. [137] Finding out how to incorporate advanced AI with existing legal and social structures is an emerging problem. [138]

Benefits


AGI could have a variety of applications. If oriented towards such objectives, AGI might help reduce different problems in the world such as hunger, poverty and health problems. [139]

AGI might enhance performance and efficiency in many tasks. For example, in public health, AGI could speed up medical research study, significantly versus cancer. [140] It might look after the elderly, [141] and equalize access to rapid, top quality medical diagnostics. It might use enjoyable, cheap and customized education. [141] The requirement to work to subsist could end up being outdated if the wealth produced is properly redistributed. [141] [142] This likewise raises the question of the place of human beings in a radically automated society.


AGI might likewise assist to make logical decisions, and to anticipate and prevent disasters. It could also assist to profit of potentially disastrous technologies such as nanotechnology or environment engineering, while preventing the associated threats. [143] If an AGI's primary goal is to avoid existential disasters such as human termination (which could be challenging if the Vulnerable World Hypothesis turns out to be real), [144] it might take measures to drastically reduce the dangers [143] while reducing the effect of these measures on our quality of life.


Risks


Existential risks


AGI may represent multiple kinds of existential danger, which are threats that threaten "the early termination of Earth-originating smart life or the permanent and drastic damage of its potential for preferable future development". [145] The risk of human termination from AGI has been the subject of lots of disputes, however there is likewise the possibility that the development of AGI would lead to a permanently flawed future. Notably, it might be utilized to spread and maintain the set of worths of whoever establishes it. If humankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI could assist in mass security and brainwashing, which could be used to create a steady repressive around the world totalitarian routine. [147] [148] There is also a risk for the makers themselves. If devices that are sentient or otherwise worthwhile of moral consideration are mass developed in the future, participating in a civilizational course that forever overlooks their well-being and interests might be an existential catastrophe. [149] [150] Considering just how much AGI might enhance humankind's future and help in reducing other existential threats, Toby Ord calls these existential dangers "an argument for proceeding with due care", not for "deserting AI". [147]

Risk of loss of control and human termination


The thesis that AI presents an existential danger for humans, and that this risk requires more attention, is controversial but has actually been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking criticized widespread indifference:


So, facing possible futures of enormous benefits and risks, the experts are surely doing everything possible to make sure the finest result, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll show up in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]

The prospective fate of mankind has often been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence permitted mankind to dominate gorillas, which are now susceptible in methods that they might not have anticipated. As a result, the gorilla has actually ended up being a threatened types, not out of malice, but just as a collateral damage from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to control humanity and that we should beware not to anthropomorphize them and interpret their intents as we would for humans. He said that people won't be "clever enough to design super-intelligent makers, yet extremely dumb to the point of giving it moronic objectives with no safeguards". [155] On the other side, the idea of important convergence suggests that almost whatever their goals, intelligent representatives will have reasons to try to survive and obtain more power as intermediary steps to accomplishing these goals. And that this does not require having feelings. [156]

Many scholars who are concerned about existential danger supporter for more research into resolving the "control problem" to respond to the question: what kinds of safeguards, algorithms, or architectures can programmers execute to increase the probability that their recursively-improving AI would continue to act in a friendly, instead of damaging, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could lead to a race to the bottom of safety preventative measures in order to launch products before competitors), [159] and the usage of AI in weapon systems. [160]

The thesis that AI can present existential danger also has critics. Skeptics normally state that AGI is not likely in the short-term, or that issues about AGI distract from other concerns connected to current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people outside of the innovation market, existing chatbots and LLMs are currently perceived as though they were AGI, leading to more misunderstanding and fear. [162]

Skeptics often charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some scientists think that the communication campaigns on AI existential risk by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to pump up interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and scientists, released a joint declaration asserting that "Mitigating the threat of extinction from AI need to be a worldwide concern alongside other societal-scale threats such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of employees may see a minimum of 50% of their jobs impacted". [166] [167] They consider office workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a better autonomy, ability to make decisions, to user interface with other computer system tools, but also to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be redistributed: [142]

Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or most individuals can end up miserably bad if the machine-owners successfully lobby against wealth redistribution. So far, the trend appears to be towards the second choice, with innovation driving ever-increasing inequality


Elon Musk considers that the automation of society will require governments to embrace a universal basic income. [168]

See likewise


Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI effect
AI safety - Research location on making AI safe and useful
AI alignment - AI conformance to the desired objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of artificial intelligence to play various games
Generative synthetic intelligence - AI system capable of creating material in reaction to triggers
Human Brain Project - Scientific research project
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine principles - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task knowing - Solving numerous machine discovering jobs at the exact same time.
Neural scaling law - Statistical law in machine knowing.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or form of artificial intelligence.
Transfer learning - Artificial intelligence method.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specifically designed and optimized for expert system.
Weak expert system - Form of synthetic intelligence.


Notes


^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese space.
^ AI founder John McCarthy writes: "we can not yet identify in general what sort of computational procedures we want to call intelligent. " [26] (For a conversation of some definitions of intelligence utilized by synthetic intelligence scientists, see approach of synthetic intelligence.).
^ The Lighthill report specifically criticized AI's "grandiose goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA became figured out to money just "mission-oriented direct research study, rather than basic undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a fantastic relief to the rest of the employees in AI if the innovators of new basic formalisms would express their hopes in a more safeguarded form than has actually sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As specified in a basic AI textbook: "The assertion that makers might potentially act wisely (or, maybe better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that makers that do so are really believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that artificial basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is creating synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020.
^ a b c "AI timelines: What do professionals in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and warns of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad actors from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real danger is not AI itself however the method we deploy it.
^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential risks to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humankind requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of termination from AI should be an international priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts alert of danger of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing makers that can outthink us in basic ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no factor to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the full variety of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on everybody to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart traits is based on the subjects covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of tough exams both AI versions have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers avoided the term artificial intelligence for fear of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite progress in device intelligence, artificial general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or forum.batman.gainedge.org damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in artificial intelligence: A study of skilled viewpoint. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schust

评论